
T-PHOT version 2.0 - Documentation

E. Merlin

May 4, 2016

Contents

1 Introduction 2
1.1 What’s new in this version . 2

2 Instructions for installation and usage 3
2.1 Testing the installation . 5
2.2 Input . 5

2.2.1 Header of files: needed keywords 6

3 Basic global structure of the code 6

4 Description of T-PHOT stages 9
4.1 Priors . 9
4.2 Convolve . 9

4.2.1 Second pass with locally registered kernels 10
4.2.2 Culling . 11

4.3 Fit . 11
4.3.1 The basic method . 11
4.3.2 Fitting options . 12
4.3.3 Exclusion of high-RMS sources 13
4.3.4 Background subtraction 13
4.3.5 Flux prioring . 14
4.3.6 Errors estimate . 14

4.4 Diags . 15
4.4.1 Statistics on the residual image 15
4.4.2 Flags . 16

4.5 Dance . 16
4.6 Second pass multikernel convolution 16
4.7 Input external list of local kernels 17
4.8 Archive . 17

5 Output 17

6 Single source processing 18

1

7 Validation and computational times 19

1 Introduction

t-phot (Merlin et al. 2015; Merlin et al. 2016) is a software designed to per-
form precision photometry of a low resolution image using the information given
by a higher resolution image of the same field. It is the direct heir of tfit, a
software package developed ad STScI, but largely improves on it combining its
features with most of the features of convphot, a similar software indepen-
dently developed at INAF-OAR, and including many new important features.
To learn more about these two codes, please refer to Laidler et al. (2007) and
De Santis et al. (2007); the official t-phot paper is Merlin et al. 2015A&A,
582A, 15M).

t-phot is a robust and easy-to-handle code, with a precise structural archi-
tecture (a Python envelop calling C/C++ “hidden” codes) in which many differ-
ent routines are included, implementing various numerical/conceptual methods,
to be chosen by simple switches in a parameterfile. While a standard, default
“best choice” is provided and suggested, the user is thus let free to select her
own preferred way of obtaining her catalog.

t-phot ensures, as a first advantage, a large saving of computational time
with respect both to tfit and convphot. Such a result must be credited to
three disinct factors: 1) the substitution of many Python scripts with C codes,
which are way faster, 2) a global re-organization of the structure of the code,
and 3) the introduction of the FFT method (which was already implemented in
tfit but not in convphot) in the convolution stage (see below).

Also, t-phot is capable of handling large datasets thanks to a clever use of
the CPU memory, allowing for the processing of large fields in one single run.

However, t-phot also improves on the numerical results with respect to pre-
vious codes, thanks to different implementation of many routines and conceptual
recipes.

1.1 What’s new in this version

This is the version 2.0 of the t-phot software package. It features a number
of new options with respect to the previous public release 1.5.11. All changes,
including minor revisions, bug corrections and chronological developments, are
reported in the log.txt file. The most important new options are:

• Background fitting: two methods (global subtraction of a constant fit-
ted value, and local fit of individual “background templates”), Section
4.3.4

• Local/individual kernel fitting: Section 4.7

• Flux prioring: Section 4.3.5

• Statistics on the residuals: Section 4.4.1

2

• RMS threshold for excluding sources from the fit: see Section 4.3.3

• Individual kernel registration: Section 4.5

A technical new option is the command line input : it is now possible to
enter parameters from command line, in case over-writing the ones specified in
the parameter file. Keywords and corresponding values can be entered typing
-<keyword> <value> after the parameter file specification, e.g.

$ tphot param.file -order cutout -hiresfile newimage.fits

A revision of the code architecture in the kernel local registration and in the
convolution stages has also been performed, to make the workflow simpler and
better organized. Now templates are registered on the fly during the second pass
convolution stage, and the second pass local kernels are not stored anymore.

2 Instructions for installation and usage

To install and use t-phot you need:
- Python (version 2.7.6 or later), and its modules numpy, astropy, mat-
plotlib (on Linux-Ubuntu OS, you can get them using:

$ sudo apt-get install python-numpy

and similar commands)
- cfitsio library (download the tarball from website
http://heasarc.nasa.gov/fitsio/fitsio.html

and follow instructions in the README file)
- fftw3 library (download the tarball from website
http://www.fftw.org/download.html

and follow instructions in the README file).

Move to your chosen directory

$ cd /your/path/

move the t-phot tarball there and unzip it with

$ tar -xvf TPHOTv1p0.tar.gz

The lib directory contains the Python library and the subdirectory src,
in which C and C++ source codes are found.

To install t-phot,

$ cd /your/path/tphot/lib/src

and edit the Macrodefs file relative to your OS, indicating the paths for the
cfitsio libraries; e.g., use

$ locate libcfitsio.so

3

Then, edit the first line in /your/path/tphot/lib/src/c src/Makefile

and in /your/path/tphot/lib/src/fitter src/Makefile including the
Macrodefs.*OS* you are using.

Also, edit your /.envrc including /your/path/tphot/bin in $PATH.
Then

$ cd /your/path/tphot/

Change permissions if needed ($ chmod +x install.py clean.py and

$ sudo ./install.py

NOTE that sudo-ing is required to install t-phot in the /bin directory of the
user.

To run t-phot make sure the .envrc file contains something like:

export LD_LIBRARY_PATH=~/cfitsio/lib:$LD_LIBRARY_PATH

export FFTW_PATH=/usr/local/lib

export PYTHONPATH=/usr/local

export PATH=/your/path/tphot/bin:$PATH

After having rehashed your shell, $ cd to the directory where data files are,
copy the parameterfiles you can find in /your/path/tphot/lib, edit them as
you need, check all the needed input is there (see Sect. 2.2), and type e.g.:

$ tphot taskparfile1.param

or

$ tphot taskparfile1.param > out_pass1.log &

or, if you wish to run both passes (see Sect. 3) in sequence,

$ tphot taskparfile1.param ; tphot taskparfile2.param

(NOTE: the parameterfiles contain an explanatory guide to edit them; it should
be read carefully). The parameterfiles come with default “best-choice” options:
store cutouts, convolve using FFT, fit with cells-on-objects method (see Sect.
4.3.2), etc., but they can be edited as desired.

One can also choose to run the code in interactive mode, typing

$ tphot -i taskparfile1.param

which will start a run with some input to be given during the process.
Finally, from version 2.0 it is possible to add command line options, speci-

fying the value of any parameter and over-writing the one in the parameter file:
e.g.,

$ tphot taskparfile1.param -order cutout -hiresfile newimage.fits

To uninstall,

$./clean.py

4

2.1 Testing the installation

The tarball includes a directory test. After installing t-phot, move to the
directory and type

$ tphot test.param

In a few seconds the test should end and the results should be compared
with the one stored in the output check subdirectory.

2.2 Input

t-phot can use different types of datasets as input priors. Depending on the
choice the user makes, the needed input files will be different. NOTE: the IDs of
the objects must always be consistent, i.e. each object/component/model must
have its own unambiguous identification number.

To run t-phot you need:

• for the PRIORS stage:

– for true high-resolution cut-out priors, a detection, high resolution
image (HRI hereafter) in .fits format (values in counts/s); a cata-
log of the sources in the HRI, obtained e.g. using SExtractor or
similar codes; the catalog must have the following format:

id x_obj y_obj xmin ymin xmax ymax loc_bckg obj_flux

where x obj and y obj are the pixel coordinates of the source cen-
troid, xmin ymin xmax ymax are the pixel boundaries of the source,
loc bckg is a constant local background 1, and obj flux is the total
flux of the object (in counts/s) as determined within some aperture;
and a segmentation map of the HRI, in .fits format, again obtained
e.g. using SExtractor or similar codes, having the value of the id

of each source in the pixels belonging to it, and zero everywhere else;

– for theoretical model priors (e.g. Galfit models, the stamps of the
models (one per object) and a catalog listing them; if models are
multi-components, one separate stamp per component is needed, and
one catalog for each component is needed (e.g. one catalog for bulges
and one catalog for disks), having the same names plus a “ 1”, “ 2”
etc. suffix (this is because the components will be treated as differ-
ent objects for all purposes); the catalog must have the same format
described above, and in particular it must report in the 9-th (and
last) column the magnitudes of the models (this will be used to sort
the sources by flux in the fitting procedure). A stand-alone module,
galfit2tphot.py, is provided and can be used to convert Galfit

1If the HRI is background subtracted, this columns should be zero for all sources. How-
ever, t-phot includes a switch in the parameterfile to choose whether this values should be
subtracted when cutting out stamps, see Sect. 4.1, or ignored.

5

stamps having arbitrary names and header format, and Galfit cat-
alog listing x and y positions in the Galfit stamps reference frame
(which is the standard Galfit output), into t-phot readable for-
mat. To do so, run

galfit2tphot HRI ZeroPoint modelscat modelsdir outcat outdir

(note that if modelsdir and outdir are the same directory, models
will be over-written in the new format; otherwise, they will be copied
in the new output directory);

– for unresolved, point-like priors, a catalog of positions with format

id x_obj y_obj

t-phot can process together mixed priors of different types, provided all
input is given correctly.

• a low resolution image (LRI), on which the fluxes will be measured, in
.fits format, with the same orientation of the HRI (i.e., no rotation;
values in counts/s). The pixel scale can be equal to, or an integer multiple
of, the HRI pixel scale, with pixels boundaries consistently overlapping.
The LRI should be background subtracted; however, from version 1.6.1
t-phot can subtract a constant background over the whole image, and a
local background for each source, during the fitting stage (see Sect. 4.3.4);

• the LRI RMS map, in .fits format;

• for real or model priors, a convolution kernel K, in the format of a .fits

image or of a .txt file, matching the PSFs of the HRI and the LRI so
that PSFLRI = K ∗PSFHRI , where ∗ is the symbol for convolution. The
kernel must have the HRI pixel scale; for unresolved priors, the LRI PSF
(if both types of priors are used, both the LRI PSF and the convolution
kernel must be given).

2.2.1 Header of files: needed keywords

Before starting a run of t-phot, be sure that all the input images have the fol-
lowing keywords in their headers: CRPIXn, CRVALn, CDn n, CTYPEn (n=1,2).
If models are used as priors and they are produced externally, they also must
have these keywords in the header, plus a TOTFLUX keyword, set to 1.0.

3 Basic global structure of the code

The t-phot global structure is similar to the tfit structure, with some sem-
plifications and adjustments. The code goes through “stages”, each of which
performs a well defined task. The best results are obtaining performing two runs
(“pass 1” and “pass 2”), the second one being run using local kernels registered
after the X,Y shifts determined in the first pass during the dance stage; it is

6

important to set the keyword multikernel to true for the second pass (see
Sect. 4).

The pipeline followed by the code is specified by the keyword order in the
parameterfile. The simplest way to run the code is to simply put

order standard

This is interpreted by t-phot as a typical first pass run, i.e. the following
pipeline:

order priors, convolve, fit, diags, dance

Both forms are accepted, as well as other combinations of stages (see their
description below), provided they make sense!

A second typical second pass run would be

order standard2

or, equivalently,

order convolve, fit, diags, archive

It is also possible to set

order FIRstandard

and/or

order FIRstandard2

for standard far-infrared (FIR) processing, i.e. using point-like priors and PSF-
shaped templates during the fit. In this case the real pipelines will be

order positions, fit, diags, dance

and/or

order positions, fit, diags, archive

respectively. NOTE that if the FIRstandard options are used, any input given
for high resolution real priors or model priors will be ignored.

The possible stages are the following:

• priors: creates/organizes stamps for sources as listed in the input priors
catalog(s). t-phot automatically re-organizes the pipeline on the basis
of the input files listed in the parameter files; if the interactive option
is used, it will ask to confirm the re-organized pipeline after proceeding
on. Always remember to set as True the keyword(s) in the parameter-
files describing the type(s) of priors that are going to be used (usereal,
usemodels, useunresolved). The real pipeline stages for priors process-
ing are cutout and/or models, and they can be used in place of the general
priors keyword. For unresolved priors, the stage positions can be ex-
plicitely specified and put after the keyword convolve; however, this stage
can be as well managed by the general priors keyword. See Sect. 4.1 for
more details;

7

• convolve: convolves each high resolution stamp (after culling) with a
convolution kernel K to obtain normalized models (“templates”) of the
sources in low resolution; also, if the pixel scale of the images is different
transforms templates accordingly. If the keyword multikernels is set to
TRUE, uses a list of local X,Y shifts to produce locally registered kernels
on-the-fly. If the keyword mkext is set to TRUE, uses external local kernels
as provided by the user (see Sect. 4.7). Finally, if an input catalog of
unresolved sources is given, merges the catalog of such templates with the
one produced in the position stage;

• fit: performs the fit obtaining the multiplicative factors to match each
template flux with the measured one (see Sect. 4.3);

• diags: selects the best fits2 and produces the final output catalog with
fluxes and errors, plus some other diagnostics, see Sect. 5. If the keyword
residstats is set to TRUE, computes some statistics on the residual image
produced subtracting the fitted models from the original measurement
image, see Sect. 4.4.1. If the output catalog has a different number of
sources with respect to the input templates catalog, rearranges the output
to match it (see Section 5);

• dance: obtains shifts in the X,Y directions to individually register kernels
in a subsequent convolution stage; it can be skipped if the user is interested
in a single pass run;

• plotdance: plots a diagnostic image of the shifts obtained in the dance
stage; it can be skipped for any other purpose than diagnostics;

• archive: archives all results in a subdirectory whose name is based on
the LRI and the chosen fittin method.

t-phot works in the HRI reference frame for all the priors stages, turning
to the LRI reference frame during the convolve stage. This is the whole scheme:
- priors catalog is produced in HRI reference;
- templates catalog is produced in LRI reference;
- in the fitting routine, sources are read in from the templates catalog, loaded
into a grid with coordinates in LRI reference, and the fit is done in LRI reference;
- the final output catalog is LRI in reference.
Also, the header of the LRI image is modified with the addition of the two
parameters Xoff and Yoff giving the relative offset of the LRI w.r.t. the HRI.

2Each source is fitted more than once if an arbitrary grid is used, as in the standard tfit
approach.

8

4 Description of T-PHOT stages

4.1 Priors

t-phot creates/organizes stamps for sources listed in the given input priors
catalog(s). The stamps are in .fits format, each containing a single source.
An output catalog is produced, merging all priors input catalogs.

As already said, t-phot automatically re-organizes the real pipeline on the
basis of the keywords given in the parameter files: set as True the keyword(s)
in the parameter files describing the type(s) of priors that are going to be used
(usereal, usemodels, useunresolved), and set to False or comment out the
other(s). The real stages are cutout (for real priors: creates/saves stamps us-
ing the HRI, the segmentation map and the input catalog; pixels outside the
segmentation of each source are put to zero in their stamps; if the keyword
savecut is put to true, the stamps will be stored, while this is automatically
done if mixed priors are used; otherwise, they will be produced on-the-fly during
the subsequent convolution stage; if the relative switch is set to true in the pa-
rameterfile, the local background as reported in the input catalog is subtracted
as a constant from each pixel flux value; finally, the total flux within the cutout
area is computed and listed in the output catalog, and the stamp total flux
is normalized to one) and models (for models: organizes models stamps and
catalog).

If a catalog of unresolved point-like sources is given in input, the stage
positions is also performed. In this stage, templates for unresolved sources
are produced shifting the LRI PSF to the exact position given in the catalog,
including intra-pixel interpolation.

The general order of the mixed priors processing is

cutout - models - convolve - positions

where the convolve stage is described below. At the end of each stage, the
processed catalog is merged with the one outputted by the previous stages, if
necessary.

If the keyword culling is set to true, t-phot will check which sources in
the HRI catalog(s) do not belong to the LRI frame and can therefore be skipped,
before producing the stamps; if it is set to false, this stage will be performed
after producing all stamps, before the convolution process (see Sect. 4.2.2)

4.2 Convolve

In this stage, high resolution cutouts (undependently of their origin) are con-
volved to low resolution via convolution with a kernel K. This can be either
a global kernel, input via the keyword kernelfile, or a local/individual ker-
nel if the keyword mkext is TRUE (see Sect. 4.7), or a locally registered kernel
obtained on-the-fly from one of the previous two if a file listing X,Y shifts has
been produced in a previous dance pass and the keyword multikernels is set
to TRUE (see Sect. 4.2.1).

9

The convolution can be performed via straight pixel-per-pixel processing,
or using a much faster FFT convolution, directly calling the C library FFTW3;
the choice is specified via the relative keyword in the parameterfile. Each high
resolution stamp is first padded adding half the size of the kernel to each side,
and then bringing the dimensions up to the nearest power-of-two integer, which
speeds up FFTW3 computations. Finally, the resulting convolved template is
cutted to its right dimensions after the convolution. Note that, as declared in
its scientific distribution paper, “FFTW is typically faster than all other publicly
available DFT software, including the well-known FFTPACK and the code from
Numerical Recipes”. See www.fftw.org/benchfft/.

After convolution, templates are transformed to the LRI pixel scale if the
latter is different from the HRI one (as specified by the relscale keyword in
the parameterfile). Templates are subsequently cut where necessary, so that
they are all within the limits of the LRI; full templates can be stored anyway if
desired. Also, they are normalized to total flux = 1.

As anticipated, real prior cutouts from the HRI can be obtained on-the-
fly during the convolve routine, processing sources from scratch to the final
template (i.e.: read the catalog; check if it will be processed; if so, DO NOT
print out cutout but simply produce an array and convolve it). To do so, put
the keyword savecut to false in the parameterfile, and explicitely exclude the
stage cutout from the keyword order in the parameter file (i.e., do NOT put
order standard but instead order convolve, fit, diags, dance etc.). In
this way, one can choose whether to obtain the templates for a large HRI and
only use a subset of them when processing a smaller LRI, or, on the other hand,
to skip the cutout production stage if HRI and LRI are only used together and
of similar dimensions. The computational time is nearly identical.

However, if mixed priors are used, cutouts for real priors will be automati-
cally saved and stored, to avoid possible confusion.

4.2.1 Second pass with locally registered kernels

During the dance stage (Sect. 4.5), a list of X,Y shifts is produced (in HRI
pixel scale). If the keyword multikernels is set to TRUE in the parameter file,
t-phot reads the file produced during this stage, which lists the shifts for each
source (the file is named after the ddiagfile keyword in the parameter file).
During the convolution process, it creates a locally registered kernel on-the-fly,
and uses this shifted kernel to produce a registered template.

NOTE: for unresolved priors, the shifts are re-cast in LRI pixel scale during
the positions stange in pass 2.

NOTE: kernels are registered individually for each source since v2.0. Pre-
viously they were registered on “regions” of predetermined sizes, which could
lead to large inaccuracies. The keyword dzonesize in the parameter file now
gives the minimum size of the cells on which the cross-correlation between the
collage model image and the LRI is made: if the template of a source is smaller
than it the box is enlarged to that value. See Sect. 4.5.

10

4.2.2 Culling

In t-phot sources which are present in the input HRI catalog but are largely
outside the LRI frame can be automatically excluded before the priors stage
(to avoid producing stamps for the whole HRI when one is interested only on
the sources subset matching the LRI field), or right before the convolution stage,
to produce the stamps for a whole HRI for subsequent re-use but only convolve
the relevant ones. In this case, the prediction of the sources to be culled out
is performed before the convolution, since the dimensions of the kernel and
therefore of the resulting templatescan be computed in advance.

4.3 Fit

In t-phot, a C++ code is still used, largely based on the original tfit fitting
code, but including many new features, which are described below.3

4.3.1 The basic method

The search for the LRI fluxes of the objects detected in the HRI is performed
creating a linear system

I = F1P1 + ...+ FNPN (1)

where I contains the pixel values of the fluxes in the LRI, Pi are the normalized
fluxes of the templates for the N objects in the (region of the) LRI being fitted,
and Fi are the multiplicative scaling factors for each object. In physical terms,
Fi represent the flux of each object in the LRI (that is, it is the unknown to be
determined).

Once the normalized templates for each object in the (region of the) LRI
have been generated during the convolve stage, the best fit to their fluxes can
therefore be derived by minimizing a χ2 statistic,

χ2 =

[∑
m,n I(m,n) −M(m,n)

σ(m,n)

]2
(2)

where m and n are the pixel indexes,

M(m,n) =

N∑
i

Fi(m,n)Pi(m,n) (3)

and σ is the RMS value in the pixel.

3The routine is parallelized; in the parameter file, the desired number of CPUs to be
used can be specified with the keyword nproc (default=1); nproc should be an even number,
however t-phot will adjust it to its optimal value if it is odd or it is higher than the disposable
CPUs on the working machine. Then, a pool of workers is called by the Python module
multiprocessing; each CPU reads the whole set of data but then only works on a region of
the image to be fitted and produces a catalog. At the end of the fitting procedure, catalogs
are joint in a single one.

11

The output quantities are the best-fit solutions of the minimization proce-
dure, i.e. the Fi parameters and their relative errors. They can be obtained
resolving the linear system

∂χ2

∂Fi
= 0 (4)

for i = 0, 1, ..., N .
In practice, the linear system can be rearranged into a matrix equation,

AF = B (5)

where the matrix A contains the coefficients PiPj/σ
2, F is a vector containing

the fluxes to be determined, and B is a vector given by IiPi/σ
2 terms. The

matrix equation is solved via one out of three possible methods (see Sect. 4.3.2).

4.3.2 Fitting options

• Three different methods for solving the linear systems are now imple-
mented and they can be selected with a simple switch in the parame-
terfile: namely, the LU method (used by default in tfit); the Cholesky
method; and the Iterative Biconjugate Gradient method (used by default
in convphot).

• A threshold can be imposed so that only pixels with a flux higher than
it will be used in the fitting procedure; again, the value of the threshold
must be defined in the parameterfile.

• Sources which end up with a large, unphysical negative flux (fmeas < 3σ)
can be excluded from the fit, and in this case a new fitting procedure will
be performed; to do so, switch the clip keyword in the parameterfile to
TRUE.

• Along with the standard tfit method (in which the LRI is subdivided into
an arbitrary grid of cells, and the fit is performed - that is, a linear system
is solved - independently in each cell; in the end, the best fit for each source
is chosen as the one obtained in the cell in which the object is closer to the
center) and the standard convphot method (in which the fit is performed
on the whole LRI as a whole, in a single step, requiring large amounts of
computational time and memory if the image is relatively large), a new
cells-on-objects fitting method can be chosen. If this method is chosen, the
sources are first ordered by decreasing HRI flux; then, a loop is performed
on them, and a fitting cell is built around each one, initially having the
dimensions of the object template; the cell is subsequently enlarged, and
objects overlapping the central source or any other object already included
in the cell are appended to the cell list, unless they are way fainter than the
central source, or they only overlap for a tiny fraction of their area. The
fitting procedure is then performed on the cell; at the end, only the central
object is considered, its measured flux is stored, and the object is subtracted

12

from the LRI. In this way, there is no possibility that a bright object may
contaminate the fit of any other source in the image. Large computational
time saving is possible, depending on the level of blending/confusion in
the LRI: if the latter is very high, most sources will be overlapping, and
the cells will be very large, ultimately resulting in repeating many times
the fit on regions with dimensions comparable to the whole image. On the
other hand, if the confusion is not dramatic, a saving in computational
time up to two orders of magnitude can be achieved. NOTE that using
the arbitrary cells method can introduce potentially large errors to the
flux estimates, due to wrong assignations of peripheric flux from sources
located outside a given cell to sources within the cell. The single fit on the
whole image should always be the option of choice, as it provides the most
accurate estimate. However, this may not always be possible, depending
on the size of the problem. In such cases, the cells-on-objects methods can
provide an acceptable alternative, provided the blending in the LRI is not
too dramatic.

4.3.3 Exclusion of high-RMS sources

To exclude from the fit sources belonging to regions with exceedingly large
RMS values (e.g. flawed regions, or artificially enlarged borders) it is possible
to include a keyword rmscheck in the parameter file; if the value is set equal
to some cRMS > 0, a check is performed on the RMS map and sources having
their central pixels with a value higher than cRMS are automatically excluded
fro mthe list of the sources to be fitted. These sources will be re-included in an
extended version of the final output catalog (see Section 5).

4.3.4 Background subtraction

From version 1.6.1, t-phot can subtract a constant background from the whole
image, and/or a local background for each source, during the fitting stage. To
subtract the constant global background, set the keyword fitbackground to
true in the paramfile.

IMPORTANT NOTES:

• It is strongly recommended to use this option only with the whole image
fitting method. If a cell method is used for the fit, the local background
will be computed for each cell and this might lead to patchy solutions.

• The value of the background will only be outputted in the log file of the
fitting routine, while the model and residual images will not be background
subtracted; to visualize the results, the user must subtract the fitted value
from the residual image. On the other hand, the fitted fluxes in the output
catalog obviously take into account the background.

To fit a local background for each source, t-phot will build an additional
template that will be fit simultaneously with the real object template. Set the

13

keyword fit loc bkgd in the paramfile to an integer giving the offset to be
assigned to the IDs of the fake bakground templates (it should be larger than
the maximum ID of real objects). IMPORTANT NOTE: The fitted value for
these background templates may scatter significantly from a reliable average
value. Also, including these templates will change the covariance matrix and
hence affect the error budget of the measured fluxes. To cope with these is-
sues, it is strongly suggested to build a model image including only the fitted
background templates (see Sect. 4.4), subtract it from the real image (perhaps
after smoothing), and repeat the fit in standard mode on this final background
subtracted image.

4.3.5 Flux prioring

From version 1.6.4, it is possible to perform the fit with an option to constrain
fluxes within a chosen interval around a fixed value.

To do so, the matrix AF = B is modified as follows:

• when i = j, the element aij now changes to aij = aij + 1/σ2
i , where fi is

the estimated flux for source i that you has to be used as prior for that
source, and σi is its associated uncertainty;

• Bi = Bi + fi/σ
2
i .

To enable this flux prioring option, a file must be prepared with the following
format:

id flag fluxprior fluxerror

in which flag is equal to 1 if the object is to priored and to 0 if it has to be
fitted freely, fluxprior is the value fi around which it has to be fitted, within
an error fluxerror σi. Then, add the name of the file to the parameter file,
with keyword fluxpriorscat.

4.3.6 Errors estimate

In this same stage, covariance output is computed. Errors to each source are
assigned as the square root ot the diagonal element of the covariance matrix
relative to that source. Errors are listed in the output catalog; the whole covari-
ance matrixes are listed in a separate output text file, and are also graphically
reproduced in .fits files in a subdirectory.

NOTE that using any cell method for the fitting will affect the uncertainty
budget (the nominal errors outputted along the best fit fluxes), since a different
matrix is resolved for each cell and the errors are computed via covariance
matrix.

NOTE also that this error budget is a statistical uncertainty, and is not
related to any possible systematical error, which can instead be tracked via
flagging of potentially problematic sources (see Sect. 4.4.2).

14

4.4 Diags

This is a module used to extract the best solutions from the different ones
found within different cells, assemble the final output catalogs, and produce the
diagnostic images (collage and residual). NOTE: it is possible to input a file
containing a list of IDs from the HRI catalog to be excluded from the collage
and residual images (keyword exclfile). This feature can be useful to isolate
objects removing neighbors (to do so, include in the list the ID of the object
to be kept and see the residual image), or to remove bright foreground sources
leaving background objects. The output catalog contains the following data
listed for each detected source (as reported in the catalog file header): id, x
and y positions, id of the cell in which the best fit has been obtained (only
relevant for arbitrary grid fitting method), x and y positions of the object in
the cell and distance from the center (always equal to 0 if the cells-on-objects
method is adopted), fitted flux and relative error (these are the most important
output quatities), flux of the object as determined by SExtractor (i.e., the
same given in the input catalog), flux of the object as determined in the cutout

stage (it should be equal to the previous one if the segmentation was not dilated),
flag indicating a possible bad source (see below), number of fits for this source
(only relevant for arbitrary grid fitting method, 1 in all other cases), maximum
flag (old feature). The last two columns give ID of the object having the largest
covariance with the present source, and the covariance index, i.e. the ratio of
such maximum covariance and the variance of the object itself; this number can
be considered an indicator of the reliability of the fit, since large covariances
often indicate a possible systematic offset in the measured flux of the covarying
objects (see Merlin et al. 2014).

4.4.1 Statistics on the residual image

From version 1.6.1, it is possible to obtain a set of diagnostic statistics computed
on the residual image. To do so, set to TRUE the keyword residstats. A file
residual stats.cat will be produced, listing mean, median, RMS and kurtosis
computed on the residual image at each source’s positions, on all the pixels on
which the corresponding template model is extended. Also, the same values
computed only on an inner and outer regions (the limit of such regions is defined
where the flux of the template is half the value of the peak) will be output.

NOTE that the module tphot resid stats.py can also be used as a stand-
alone script, with command line

python tphot_resid_stats.py fluxcat templdir templcat residimg

where fluxcat is the catalog with the fitted fluxes output by t-phot, templdir
and templcat are the folder and the catalog of the convolved templates, and
residimg is the residual image.

15

4.4.2 Flags

There can be different possible causes for systematic offsets of the measured flux
with respect to the true flux of a source. Some of these causes can be easily
identificated and a flag can be given to the interested sources. t-phot assigns
the following flags:

• +1 if the prior has saturated or negative flux

• +2 if the prior is blended with another one (the check is performed on the
segmentation map)

• +4 if the source is at the border of the image.

4.5 Dance

In this stage, shifts in HRI reference pixels, along X and Y directions, are com-
puted for each source, for subsequent use in a second, multikernel pass. NOTE
that in previous versions the shifts were computed on a predefined grid of boxes,
potentially leading to inaccuracies. There are three conceptual stages:

• x, y shift is computed for each object, cross-correlating the collage image
and the LRI on the its template area4; if the size of the template is smaller
than dzonesize, it is enalrged;

• to avoid spurious shifts due to local noise, the final values are smoothed
over the closest neighbors. The keyword nneighinterp in the parameter
file defines the number of neighbors over which the smoothing is per-
formed; if it is set to 0, t-phot will include all and only the neighbors
within a fixed area defined by the radius 3×

√
A/Nsources, where A is the

area of the image. If the keyword is set to a negative value, no smoothing
will be performed. A reasonable default value can be 50 <nneighinterp<
100.

• finally, a catalog listing the shifts for each source are produced.

4.6 Second pass multikernel convolution

Having obtained the local shifts to register the sources, they can be used for
a second pass, to obtain more astrometrically precise results. In this pass, the
keyword multikernel in the parameterfile must be switched to true. t-phot
builds on-the-fly local kernels to produce the new templates that will be used
for the pass2 new fit.

If unresolved priors are used, the list of shifts generated in the dance stage
will be used by the positions routine during the second pass to produce cor-
rectly shifted PSFs and generate new templates.

4FFT and direct cross-correlations are implemented, the latter being the preferred default
choice giving mores precise results at the expense of a slightly slower computation.

16

4.7 Input external list of local kernels

From version 1.6.3, it is possible to input an external list of local or individual
kernels, to be associated arbitrarily to the HRI cutouts, e.g. for varying PSFs
in different regions of the LRI. To do so, just cd to the working directory and
create a subdirectory named KERNELS, containing all the kernels in .fits format;
IMPORTANT: the kernels must be named id KERNEL.fits, where id is the ID
of the source they must be associated with: e.g., the kernel that must be used to
convolve the object with ID=1 must be named 1 KERNEL.fits, and so on. This
way, t-phot will associate the correct kernel to each source. Then, be sure that
the keyword the keyword mkext exists and is set to true, in the paramfile of
both pass1 and pass2. In pass2, the keyword multikernels can be switched to
TRUE if the user wants to locally registrate the kernels using the shifts computed
during the dance stage of pass1.

4.8 Archive

At the end of the second pass, if the stage archive is included at the end of
the process, all results (catalogs, diagnostic images, log files etc.) will be stored
in a new subdirectory, whose name is based on the LRI and the chosen fittin
method.

5 Output

t-phot output files are as nearly identical to the tfit ones. Namely, they are:

• the “best” catalog described above (named after the tphotcat keyword
in the parameterfile), reporting source IDs, positions, measured fluxes
(counts/s) and errors, plus other useful diagnostic quantities. NOTE:
from version 1.6.6, if the final catalog has a different number of sources
with respect the templates catalog (e.g. because of culling, or because
of exclusion from the bit for having too high RMS), a new catalog with
a COMPLETE suffix will be created, in which the missing sources will be
included with fitted flux equal to −0.990000E+02 and error 0.990000E+
10.

• two catalogs reporting statistics for the fitting cells and the covariance
matrixes (named after the keywords tphotcell and tphotcovar;

• a model .fits image, obtained as a collage of the templates, named after
the keyword modelfile;

• a diagnostic residual .fits image, obtained subtracting the collage image
from the LRI;

• a subdirectory containing all the templates;

17

• a subdirectory containing the covariance matrices in graphic (.fits) for-
mat;

• a few files relative to the shifts of the kernel for the secon pass and a
subdirectory containing the shifted kernels.

6 Single source processing

The t-phot C codes can be launched directly, to study one single source (or
some of them of course).

These are the command lines:

• cutout:

$ tphot_cutout HRI SegImage Cat OutDir OutCat SubBckg

where: Cat is a .txt file in SExtractor shape, i.e.: id x y xmin ymin

xmax ymax bckgd flux, with the values copied from the real SExtrac-
tor catalog for the desired source(s) (important : remember to add a blank
line at the end!); OutDir is the output directory, create it if does not exist
or just give ./ as input, and SubBckg is 1 if the value given in the 8th
column of the input catalog must be subtracted.

• convolution:

$ tphot_convolve InDir InCat Kern OutDir OutCat

Xoff Yoff LRI 0 None 1 0 HRI SegImage PixRatio

SubBckg 0 None 0 Normalize

where: InDir is the directory in which the cutout thumbnail to process
is found; if there is no cutout the convolution will be done using the HRI

data, but InDir must exist (even if void), so just create it or print ./ as
input; InCat is the same as in the cutout case; Kern is the kernel file, in
.fits format if the last digit (before the HRI argument) is “0”, or in .txt

format if it is “1”; OutDir is the output directory, create it if does not
exist or just give ./ as input; Normalize is equale to “1” to normalize the
convolved template to unitary flux; Xoff and Yoff are the offset in X and
Y directions of the LRI w.r.t. the HRI, to find them if you don’t know
them:

$ python /your/path/tphot/lib/get_offset.py LRI HRI

while SubBckg (1 = True) is used in case the cutouts must be created on
the fly.

18

7 Validation and computational times

Please refer to Merlin et al. (2015).
Please also consider not to harm animals for your pleasure. :)

19

